

Server Appliance Server Appliance
Network Operating SystemNetwork Operating System

Technical Overview

Copyright (C) 2003-2004 Michael Ringgaard, jbox.dk, All rights reserved.

sanos

SanOS Features 1

• Minimalistic application
server operating system
kernel.

• Open Source (BSD style
license).

• Runs on standard PC
hardware.

• 32-bit protected mode.

• Interrupt driven.
• Priority-based preemptive

multitasking.
• Single address space.

• Kernel protection.
• Virtual memory.
• PE dynamically

loadable modules
(standard EXE/DLL
format).

• Both kernel and user
modules.

• Low memory footprint
(less than 512 KB RAM)

• Lightweight
• Embedding support with

PC104 and Flash
devices

SanOS Features 2

• Self configuring
(PCI,PnP & DHCP
support)

• TCP/IP networking
stack

• Very efficient
multithreading

• High performance and
stability through
simplicity.

• Written in C (98%) and
x86 assembler (2%)

• Development using
Microsoft Visual C.

• Remote source level
debugging support
(windbg)

Hardware

• Standard PC
architecture

• IA-32 processor (486,
Pentium)

• RAM (min. 4 MB)

• IDE disk (UDMA)

• IDE cdrom
• Standard floppy
• Serial ports
• Keyboard

• Video controller

• NIC support:
– Novell NE2000
– AMD PCNET32
– 3Com 3C905
– SiS900
– RealTek 8129/8139
– Intel EtherExpress Pro100

Core Operating System Services

• System booting and application loading
• Memory Management

– Virtual memory mapping
– Physical memory allocation and paging
– Heap allocation and module loading and linking

• Thread Control
– Thread scheduling and trap handling
– Thread context
– Thread synchronization and timers

• I/O Management
– I/O bus and unit enumeration
– Block devices and filesystems
– Stream devices
– Packet devices (NIC) and networking (TCP/IP)

Overview

Part 1: Architecture

Part 2: Boot Process

Part 3: Memory Management

Part 4: Thread Control

Part 5: I/O Management

Part 1

Architecture

System Components

application modules

os.dll

kernel modules and drivers

krnl.dll

osldr.dll

boot

User mode

Kernel mode

Bootstrap

Kernel Architecture

io memory thread boot

hw

api

cpu fpu iop pitpic

buf

sched

dbg

start

pframe pdir

l
d
r

kmem

vmm

k
m
a
l
l
o
c

vfs socket

udpsocktcpsock
dfs

d
e
v
f
s

trap

dev

ether

netif

loopif

udptcp

ip

arp

icmp

dhcp

syscall

pcipnp

ide

fd serialconsole

kbdvideo pcnet32

ne2000

3c905c

blockblock

streamstream

packetpacketbusbus

smbfs
queue

ramdisk

null nvram

(...)

(nic...)

timer

p
r
o
c
f
s

p
i
p
e
f
s

hndlobject

cdfs

iomux

apm

User Mode Components

os

applications/modules

sntp

kernel

sysapi

netdb

resolv thread

crit
sect

heap init

netnet threadthread memorymemory bootboot

sh jinit ...

Ring 3 (user mode)

Ring 0 (kernel mode)

SYSENTER/SYSTRAP

jvm

tls

mod

signal

libc

Virtual Address Space Layout

• Virtual address space
divided into kernel
region and user region.

• Ring 0 code (kernel)
can access all 4 GB.

• Ring 3 code (user) can
only access low 2 GB
addess space.

• Kernel and user
segment selectors
controls access to
address space.

kernel

user

0x80000000

0x00010000

0xFFFFFFFF

0x00000000 invalid

user space
(2 GB)

kernel space
(2 GB)

Kernel Address Space Layout

kernel heap

handle table

page frame database

kernel modules

syspages

0x90800000

0x90400000

0x90000000

0xFFFFFFFF

0x80000000
krnl.dll

page tables

0x91000000

0x92000000

syspage

page directory

video buffer

kmodmap

osvmap

initial tcb

dma buffers

biosdata

bootparams

idt

gdt

tss

data
code

devtab
devicetab
bindtab
intrtab
ready_queue

buckets
kmods
...

boot ram disk

User Address Space Layout

peb

os.dll

invalid

initial tib

user space

0x7FFDF000

0x7FF00000

0x00010000

0x80000000

0x00000000

heap

Segment selectors

Name GDT index Base Limit Access

NULL 0 0x00000000 0x00000000 None

KTEXT 1 0x00000000 0xFFFFFFFF Ring 0 CODE

KDATA 2 0x00000000 0xFFFFFFFF Ring 0 DATA

UTEXT 3 0x00000000 0x7FFFFFFF Ring 3 CODE

UDATA 4 0x00000000 0x7FFFFFFF Ring 3 DATA

TSS 5 Ring 0 TSS

TIB 6 Ring 3 DATA

Mode CS DS ES SS FS

kernel KTEXT KDATA KDATA KDATA TIB

user UTEXT UDATA UDATA UDATA TIB

Part 2

Boot Process

Boot process

1. BIOS initialization and loading of boot sector.
2. Boot sector loads bootstrap loader (boot.asm).
3. Real-mode initialization (ldrinit)
4. Bootstrap loader sets up memory and loads kernel

(osldr.dll).
5. Kernel initializes subsystems and starts main task

(krnl.dll).
6. Main kernel task loads device drivers, mounts

filesystems and loads os.dll into user space.
7. User mode component (os.dll) initializes user

module database, memory heap, and loads and
executes the init application (e.g. sh.exe or
jinit.exe).

8. All systems are GO. We are up and running.

Step 1: BIOS

• CPU reset starts executing
ROM BIOS.

• BIOS initializes and configures
computer and devices.

• BIOS loads the boot sector from
sector 0 of the boot device (512
bytes) at 0x7C00.

• The BIOS jumps to 0:7C00 in 16
bit real-mode.

• Partitioned boot devices first
loads the master boot record
(mbr), which then loads and
starts the boot sector in the
active boot partition.

• When booting from CD or
network the whole initial boot
disk image is loaded by BIOS at
7C00. Because the boot sector
is the first sector of the boot disk
the bootstrap is executed.

osldr

0x000A0000

memend

0x00000000

BIOS ROM area

0x00007C00

boot stack

0x00090000

0x00100000
heap

boot disk image

boot sector
BIOS data area

Step 2: Boot sector (boot)

• Depending on the boot device:
– If booting from floppy or harddisk, loads the

osldr from boot device using BIOS INT 13
services

– If booting from CD or network, copies the
osldr from the boot RAM disk image

• Calls real-mode entry point in osldr. The
”DOS-stub” in osldr.dll is used for real
mode code in the loader.

Step 3: Real-mode initialization (ldrinit)

• Try to get system memory map from BIOS
• Check for APM BIOS
• Disables interrupts. Interrupts are reenabled

when the kernel has been initialized.
• Enables A20.
• Loads boot descriptors (GDT, IDT).
• Initialize segment registers using boot

descriptors.
• Switches the processor to protected mode

and calls 32-bit entry point

Step 4: Bootstrap loader (osldr.dll)

• Determines memory size.
• Heap allocation starts at 1MB.
• Allocate page for page directory.
• Make recursive entry for access to page tables.
• Allocate system page.
• Allocate initial thread control block (TCB).
• Allocate system page directory page.
• Map system page, page directory, video buffer, and initial TCB.
• Temporarily map first 4MB to physical memory.
• If initial ram boot disk present copy it to high memory.
• Load kernel from boot disk.
• Set page directory (CR3) and enable paging (PG bit in CR0).
• Setup descriptors in syspage (GDT, LDT, IDT and TSS).
• Copy boot parameters to syspage.
• Reload segment registers.
• Switch to initial kernel stack and jump to kernel.

Step 5: Kernel startup (krnl.dll)

• Initialize memory management subsystem
– Initialize page frame database.
– Initialize page directory.
– Initialize kernel heap.
– Initialize kernel allocator.
– Initialize virtual memory manager.

• Initialize thread control subsystem
– Initialize interrupts, floating-point, and real-time clock.
– Initialize scheduler.
– Enable interrupts.

• Start main task

• Process idle tasks

Step 6: Main kernel task (krnl.dll)

• Enumerate root host buses and units
• Initialize boot devices (floppy and harddisk).
• Initialize built-in filesystems (dfs, devfs, procfs, and pipefs).
• Mount root device.
• Load kernel configuration (/etc/krnl.ini).
• Initialize kernel module loader.
• Load kernel modules.
• Bind, load and initialize device drivers.
• Initialize networking.
• Allocate handles for stdin, stdout and stderr.
• Allocate and initialize process environment block (PEB).
• Load /bin/os.dll into user space
• Initialize initial user thread (stack and tib)
• Call entry point in os.dll

Step 7: User mode startup (os.dll)

• Load user mode selectors into segment
registers

• Load os configuration (/etc/os.ini).
• Initialize heap allocator.
• Initialize network interfaces, resolver and NTP

daemon
• Initialize user module database.
• Mount additional filesystems.
• Load, bind and execute initial application.

Step 8: Execute application

• All systems are now
up and running.

• The application uses
the OS API, exported
from os.dll to call
system services.

• Examples: sh.exe
and jinit.exe

OS API categories:
• system
• file
• network
• resolver
• virtual memory
• heap
• modules
• time
• threads
• synchronization
• critical sections
• thread local storage

OS API functions

canonicalize
chdir
chsize
close
dup
flush
format
fstat
fstatfs
futime
getcwd
getfsstat
ioctl
link
lseek
mkdir
mount
open
opendir
read
readdir
readv
rename
rmdir
stat
statfs
tell
umount
unlink
utime
write
writev

file
accept
bind
connect
getpeername
getsockname
getsockopt
listen
recv
recvfrom
send
sendto
setsockopt
shutdown
socket

socket
beginthread
endthread
epulse
ereset
eset
getcontext
getprio
gettib
gettid
mkevent
mksem
raise
resume
self
semrel
setcontext
setprio
signal
sleep
suspend
wait
waitall
waitany

thread
csfree
enter
leave
mkcs

critsect

tlsalloc
tlsfree
tlsget
tlsset

tls

calloc
free
mallinfo
malloc
realloc

heap

dn_comp
dn_expand
res_mkquery
res_query
res_querydomain
res_search
res_send

resolver

gethostbyaddr
gethostbyname
gethostname
getprotobyname
getprotobynumber
getservbyname
getservbyport
inet_addr
inet_ntoa

netdb

exec
getmodpath
getmodule
load
resolve
unload

module

clock
gettimeofday
settimeofday
time

time

mlock
mmap
mprotect
mremap
munlock
munmap

memory config
dbgbreak
exit
loglevel
panic
peb
syscall
syslog

system

Win32 subsystem

• Partial implementation of the following
Win32 modules:
– KERNEL32
– USER32
– ADVAPI32
– MSVCRT
– WINMM
– WSOCK32

Java VM

• SanOS supports any
standard pure Java
server applications.

• Uses Sun Microsystems
HotSpot Java VM for
Win32.

• Supports standard JNI
for native interface.

• jinit.exe loads the Java
VM and starts the main
method of the startup
class.krnl.dll

os.dll

win32 subsysjinit

jvm

Java server application
(e.g. tomcat, jboss)

(jni)

Java 2 SDK

hpi

Booting from CD-ROM

• BOOTIMG.BIN contains a small
(512K) dfs boot filesystem image
with cdboot as boot sector.

• The CD-ROM boot loader in the
BIOS loads the 512K boot image
into memory at 0x7C00.

• The cdboot bootsector in the first
sector of BOOTIMG.BIN copies
the osldr to 0x90000 and
executes it.

• The kernel is copied from the
boot image to high memory. The
boot image is also copied to high
memory.

• When the kernel is started a
RAM disk (initrd) is created from
the boot image and mounted on
root. The rest of the CD-ROM is
mounted on /usr.

System
(unused)

Bootable CD-ROM image
sector 0

sector 16 Primary volume

Boot volumesector 17

…

Set terminator volume

BOOTCAT.BIN

BOOTIMG.BIN

File data for /usr

CD-ROM root dir

boot.jbox.dksanos01.jbox.dk

Booting from network

• PXE BIOS boot ROM sends
DHCP request to obtain network
and boot parameters.

• PXE BIOS retrieves 512K boot
image (sanos.0) from TFTP
server.

• The sanos.0 image is a boot
image with a dfs filesystem. The
first sector of the image contains
the netboot boot sector.

• The netboot boot sector copies
the osldr to 0x90000 and
executes it.

• The kernel is copied from the
boot image to high memory. The
boot image is also copied to high
memory.

• When the kernel is started a
RAM disk (initrd) is created from
the boot image and mounted on
root. Then /usr is mounted on a
remote SMB file share.

dhcpd

tftpd

smbd

PXE BIOS
boot ROM

DHCP
request

TFTP
sanos.0

sanos
kernel

mount /usr

host sanos01 {
 hardware ethernet 00:30:1b:ab:95:54;
 fixed-address sanos01.jbox.dk;
 filename "sanos/sanos.0";
 next-server boot.jbox.dk;
}

From /etc/dhcpd.conf on boot.jbox.dk:

Part 3

Memory Management

Memory management

• pdir.c controls the virtual memory
mapping (pdir and ptab).

• pframe.c controls the allocation of
physical memory (pfdb).

• kmem.c tracks the use of the kernel
module and heap areas and allocation
and mapping of physical pages to
virtual addresses (osvmap and
kmodmap).

• kmalloc.c allocates and deallocates
small blocks (<4K) from the kernel
heap (buckets). Larger blocks are
delegated to kmem.

• vmm.c reserves virtual addresses in
user space and commits and maps
these to physical memory (vmap).

• heap.c is a standard C heap allocator
(malloc, free, realloc) (Doug
Lea) on top of the vmm.

pframe.c pdir.c

kmem.c

kmalloc.c

vmm.c

heap.c

Module Loader

• Both kernel and user mode DLL modules
• Loading module

– Allocate module memory and load image from file

– Resolve dependencies
– Relocate module(s)
– Bind imports
– Protect module(s)

– Initialize module(s)

– Notify debugger
– Update reference counts

Part 4

Thread Control

Thread control blocks

espthread object kernel stack

• Each thread has an 8K thread control block (tcb).
• Each tcb is aligned on 8K boundary
• tcbs are allocated on the kernel heap.

• Initial kernel thread is allocated in syspage block.

• esp0 in tss points to stack top in current tcb

tss

esp0

Thread information block (tib)

espthread object kernel stack

• Each user mode thread has a 4K thread information block (tib)
allocated in user space.

• The format of the tib is compatible with win32.
• The fs segment register always references the tib for the current

thread.
• The tib contains the thread local storage array for the thread.
• The tcb contains a reference to the tib for user mode threads.

tib

tls array

fs

User stacks

espthread object kernel stack

• Each user thread has a user mode stack
• The first page of the stack is committed when it is created.
• The rest of the pages in the stack are reserved with guard pages.
• When the stack grows the guard page handler expands down the

stack and commits pages.

tib

reserved

stacktop
stacklimit
stackbase

committed

user stack

Enter kernel (1)

• trap/fault occurs (int, exception, interrupt)

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

tcb

esp0

user stackuser code

kernel code

Enter kernel (2)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

tcb

esp0

user stackuser code

kernel code

essesp

Enter kernel (3)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags (IF=0, TF=0)

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

tcb

esp0

user stackuser code

kernel code

essespflg

Enter kernel (4)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags (IF=0, TF=0)
– push user eip, load kernel entry eip

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflg

Hardware programmed
single instrution

cseip

Enter kernel (5)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags (IF=0, TF=0)
– push user eip, load kernel entry eip

• push error code

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflgcseiperr

Hardware programmed
single instrution

Enter kernel (6)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags (IF=0, TF=0)
– push user eip, load kernel entry eip

• push error code
• push trap number, registers and set thread context pointer

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflgcseiperrregs num

Hardware programmed
single instrution

Context record

• Context record is a pointer
into the kernel stack

• This record can be modified
while in kernel mode

• Context record will be
restored when the thread
leaves the kernel

tcb

esp0

ssespflgcseiperrregs num

context record

struct context
{
 unsigned long es, ds;
 unsigned long edi, esi, ebp, ebx, edx, ecx, eax;
 unsigned long traptype;
 unsigned long errcode;

 unsigned long eip, ecs;
 unsigned long eflags;
 unsigned long esp, ess;
};

Current thread

• tcbs are aligned on 8K boundary
• The current thread can be obtained from the value of the stack pointer

in kernel mode.

tcb

esp0

kernel stack

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi
mov ebx, esp
and ebx, -sizeof tcb

Context switch (1)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

esp

tcb

kernel code

esp

tcbeip

Context switch (2)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx tcb

Context switch (3)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.
• Fetch stack pointer for new thread and store in esp0.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx

...eipebpesi edi ebx

tcb

tcb

Context switch (4)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.
• Fetch stack pointer for new thread and store in esp0.
• Restore registers from new kernel stack.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx

...eip

tcb

tcb

Context switch (5)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.
• Fetch stack pointer for new thread and store in esp0.
• Restore registers from new kernel stack.
• Return from context_switch restores eip.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx

...

tcb

System calls (1)

• System calls are exported from os.dll.
• All kernel system calls are handled by the syscall() function.
• When a kernel system call is invoked a privilege transition from user

mode to kernel mode takes place, and the stack is switched from user
stack to kernel stack.

• When the function returns these actions are reversed, the thread
switches back to the user stack and returns to user mode privileges.

• Consider the system call function(param1, param2). Prior to this
function being called, two parameters are pushed onto the user stack
in reverse order.

• When function() is invoked, the return address is first pushed onto the
user stack and then the old base pointer for the previous stack frame is
pushed. The call stack after the call looks like: param2

param1
ret addr

ebp

System calls (2)

• The implementation for function() is as follows:
 int function(param1, param2)
 {
 return syscall(SYSCALL_FUNCTION, ¶m1);
 }

• syscall() takes two parameters, a system call number,
syscallno, and a pointer to the first parameter supplied to
the function that calls syscall(). When syscall() is invoked,
these two parameters are pushed onto the user stack in
reverse order. The return address is pushed onto the
stack when the call is made and the first action of the
syscall() function is to push the base pointer onto the
user stack.

• syscall() is an assembly language routine that causes a
trap to the kernel through INT 48.

• Before doing this, it stores the system call number and
pointer to the first parameter of the specific system call in
the eax and edx registers, respectively.

syscall:
 push ebp
 mov ebp, esp
 mov eax, 8[ebp]
 mov edx, 12[ebp]
 int 48
 leave
 ret

param2
param1
ret addr

ebp

syscallno
ret addr

ebp

System calls (3)

• When the trap is executed the system switches to
kernel mode and executes the systrap routine

• systrap saves the data segments and takes the two
parameters in eax and edx and passes these to the
kernel mode syscall routine.

• The system trap mechanism has been carefully
designed to minimize the number of registers that
must be preserved between system calls.

• Support for sysenter/sysexit for Pentium processors.

esp
eip

eflags

eax ebx
ecx edx
ebp

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflgcseipdsparams essyscallno

systrap:
 push ds
 push es
 push edx
 push eax
 mov ax, SEL_KDATA
 mov ds, ax
 mov es, ax
 call syscall
 add esp, 8
 pop es
 pop ds
 iretd

Trap Frames

ssespflgcseiperrnumring 3 interrupt eaxecxedxebxebpesiedidses

ring 0 interrupt flgcseiperrnumeaxecxedxebxebpesiedidses

ssespflgcseiperrnumdsesint 48 syscall

sysenter syscall esp eipnumdses

paramssyscallno

paramssyscallno

Thread states

• Threads are created in INITIALIZED state.
• When mark_thread_ready() is called the thread

moves to the READY state and is inserted into
one of the wait queues.

• When the scheduler selects the thread for
execution it moves to the RUNNING state and
the dispatcher swicthes the processor to the
threads context.

• The thread continues running until it must wait
on an object to become signaled (blocked) or
its quantum expires (preempted).

• If the quantum expires the thread is marked as
READY and the next ready thread is moved to
the RUNNING state.

• If the thread is blocked the thread is added to
the waitlist for the object and enters the
WAITING state.

• When the object is signaled the thread is
scheduled for execution by inserting it into the
ready queue for the threads priority. The thread
enters the READY state.

• When the thread terminates it enters the
TERMINATED state. The thread object is not
removed until all handles to it has been closed.

INITIALIZED

READY

TERMINATED

WAITINGRUNNING

31

30

29

...

Scheduling

• Each thread has a dynamic and a base
priority.

• Threads that are ready to run are
scheduled in a round-robin manner based
on priority.

• A thread is not scheduled until no higher
priority threads are ready to run.

• The scheduler has one ready queue for
each priority level.

• Time slice is 36 quantum units
• Three quantum units charged per tick (10

ms)
• One quantum unit charged each time a

thread is restarted after a wait.
• Running thread preempted when higher

priority thread gets ready to run.
• Priority boosting is applied to thread when

started after an I/O wait.
• Boosting never moves threads to the real-

time range.
• Boosting is applied to the base priority.
• Dynamic priority is decreased (decayed) at

each quantum expiry until it reaches base
priority.

16

highest priority

lowest priority

15

14

...

3

2

1

0

threadthread

thread

thread

thread

re
al

-t
im

e
ra

ng
e

dy
na

m
i c

 r
an

ge

Synchronization objects

• Object types
– THREAD
– EVENT
– TIMER
– MUTEX
– SEMAPHORE
– FILE

– SOCKET
– IOMUX

Thread synchronization

• The object header
contains the
object type,
signaled state,
and a list of the
threads waiting on
the object.

• The waitblock
represents a
thread waiting on
an object.

• Each thread has a
list of the objects
it is waiting on.

thread 1

wait list

thread 2

wait list

object a

waitlist

object b

waitlist

waitblock

next

thread
object

waiter links

waitblock

next

thread
object

waiter links

waitblock

next

thread
object

waiter links

Signal handling

• Signal handlers are registered with signal().
• When a trap occurs send_signal() is called by the kernel trap handler.
• The context record is pushed into the user stack.
• Parameters to global signal handler are pushed onto the stack.
• The EIP register in the context record is change to the address of the

global signal handler.
• This causes the global signal handler in signal.c to be invoked when the

thread leaves the kernel.
• The global signal handler uses the signal handler table to dispatch the

signal to the signal handler.
• When the signal handler returns the global signal handler uses int 49 to

call the sigexit handler in the kernel.
• The sigexit handler in the kernel restores the context and resumes

execution of the thread.
• The signal handler can change the context record or use longjmp() to

alter the execution of the thread.

Part 5

I/O Management

I/O Components

• Device Drivers

• Device Manager

• Virtual File System layer and
filesystems

• Socket interface and networking

• I/O multiplexing

Device types

• Bus device (enumerate)
– pci
– isapnp

• Block device (read, write)
– fd
– hd
– cd

• Stream device (read, write)
– console
– serial

• Packet device (receive, transmit)
– 3c905c
– ne2000
– pcnet32
– eepro100
– sis900
– rtl8139

File systems

• Virtual File System (vfs)
• File systems

– dfs
Native sanos disk file system

– devfs
Device file system (/dev)

– procfs
Kernel information file system (/proc)

– pipefs
Pipe file system (for pipe())

– smbfs
Remote SMB file system (Windows file shares)

– cdfs
CD-ROM file system (ISO-9660)

• Buffer Cache Manager

Disk file system layout

block 0 block 1 block 2 block 3 ... block n

boot
sector

super
 block

reserved
blocks
(osldr)

group
descriptor

table

inode
bitmap

inode
table

block
bitmap

data
blocks

inode
bitmap

inode
table

block
bitmap

data
blocks

sector 0 sector 1 sector 2 sector 3 ... sector n

group 0 group 1 group 2 group 3 ... group n

Group 0:

Group n:

Block:

Group:

Device:

Cache buffer states

FREE

READING

WRITINGCLEAN DIRTY

LOCKED UPDATE

INVALID

Networking

• Socket interface (tcp and udp sockets)
• Network interface (netif)
• Protocols

– TCP
– UDP
– IP
– ICMP
– DHCP
– DNS
– ARP
– IEEE 802.3 (Ethernet)

Design Principles

Performance Flexibility

Simplicity

sanos

Logo

	Slide 1
	SanOS Features 1
	SanOS Features 2
	Hardware
	Core Operating System Services
	Overview
	Part 1
	System Components
	Kernel Architecture
	User Mode Components
	Virtual Address Space Layout
	Kernel Address Space Layout
	User Address Space Layout
	Segment selectors
	Part 2
	Boot process
	Step 1: BIOS
	Step 2: Boot sector (boot)
	Step 3: Real-mode initialization (ldrinit)
	Step 4: Bootstrap loader (osldr.dll)
	Step 5: Kernel startup (krnl.dll)
	Step 6: Main kernel task (krnl.dll)
	Step 7: User mode startup (os.dll)
	Step 8: Execute application
	OS API functions
	Win32 subsystem
	Java VM
	Booting from CD-ROM
	Booting from network
	Part 3
	Memory management
	Module Loader
	Part 4
	Thread control blocks
	Thread information block (tib)
	User stacks
	Enter kernel (1)
	Enter kernel (2)
	Enter kernel (3)
	Enter kernel (4)
	Enter kernel (5)
	Enter kernel (6)
	Context record
	Current thread
	Context switch (1)
	Context switch (2)
	Context switch (3)
	Context switch (4)
	Context switch (5)
	System calls (1)
	System calls (2)
	System calls (3)
	Trap Frames
	Thread states
	Scheduling
	Synchronization objects
	Thread synchronization
	Signal handling
	Part 5
	I/O Components
	Device types
	File systems
	Disk file system layout
	Cache buffer states
	Networking
	Design Principles
	Logo

