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SanOS Features 1

• Minimalistic application 
server operating system 
kernel.

• Open Source (BSD style 
license).

• Runs on standard PC 
hardware.

• 32-bit protected mode.

• Interrupt driven.
• Priority-based preemptive 

multitasking.
• Single address space.

• Kernel protection.
• Virtual memory.
• PE dynamically 

loadable modules 
(standard EXE/DLL 
format).

• Both kernel and user 
modules.

• Low memory footprint 
(less than 512 KB RAM)

• Lightweight
• Embedding support with 

PC104 and Flash 
devices



  

SanOS Features 2

• Self configuring 
(PCI,PnP & DHCP 
support)

• TCP/IP networking 
stack

• Very efficient 
multithreading

• High performance and 
stability through 
simplicity.

• Written in C (98%) and 
x86 assembler (2%)

• Development using 
Microsoft Visual C.

• Remote source level 
debugging support 
(windbg)



  

Hardware

• Standard PC 
architecture

• IA-32 processor (486, 
Pentium)

• RAM (min. 4 MB)

• IDE disk (UDMA)

• IDE cdrom
• Standard floppy
• Serial ports
• Keyboard

• Video controller

• NIC support: 
– Novell NE2000
– AMD PCNET32
– 3Com 3C905
– SiS900
– RealTek 8129/8139
– Intel EtherExpress Pro100



  

Core Operating System Services

• System booting and application loading
• Memory Management

– Virtual memory mapping
– Physical memory allocation and paging
– Heap allocation and module loading and linking

• Thread Control
– Thread scheduling and trap handling
– Thread context
– Thread synchronization and timers

• I/O Management
– I/O bus and unit enumeration
– Block devices and filesystems
– Stream devices
– Packet devices (NIC) and networking (TCP/IP)
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Part 1

Architecture



  

System Components

application modules

os.dll

kernel modules and drivers

krnl.dll

osldr.dll

boot

User mode

Kernel mode

Bootstrap



  

Kernel Architecture
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User Mode Components

os

applications/modules

sntp

kernel

sysapi

netdb

resolv thread

crit
sect

heap init

netnet threadthread memorymemory bootboot

sh jinit ...

Ring 3 (user mode)

Ring 0 (kernel mode)

SYSENTER/SYSTRAP

jvm

tls

mod

signal

libc



  

Virtual Address Space Layout

• Virtual address space 
divided into kernel 
region and user region.

• Ring 0 code (kernel) 
can access all 4 GB.

• Ring 3 code (user) can 
only access low 2 GB 
addess space.

• Kernel and user 
segment selectors 
controls access to 
address space.

kernel

user

0x80000000

0x00010000

0xFFFFFFFF

0x00000000 invalid

user space
(2 GB)

kernel space
(2 GB)



  

Kernel Address Space Layout

kernel heap

handle table

page frame database

kernel modules

syspages

0x90800000

0x90400000

0x90000000

0xFFFFFFFF

0x80000000
krnl.dll

page tables

0x91000000

0x92000000

syspage

page directory

video buffer

kmodmap

osvmap

initial tcb

dma buffers

biosdata

bootparams

idt

gdt

tss

data
code

devtab
devicetab
bindtab
intrtab
ready_queue

buckets
kmods
...

boot ram disk



  

User Address Space Layout

peb

os.dll

invalid

initial tib

user space

0x7FFDF000

0x7FF00000

0x00010000

0x80000000

0x00000000

heap



  

Segment selectors

Name GDT index Base Limit Access

NULL 0 0x00000000 0x00000000 None

KTEXT 1 0x00000000 0xFFFFFFFF Ring 0 CODE

KDATA 2 0x00000000 0xFFFFFFFF Ring 0 DATA

UTEXT 3 0x00000000 0x7FFFFFFF Ring 3 CODE

UDATA 4 0x00000000 0x7FFFFFFF Ring 3 DATA

TSS 5 Ring 0 TSS

TIB 6 Ring 3 DATA

Mode CS DS ES SS FS

kernel KTEXT KDATA KDATA KDATA TIB

user UTEXT UDATA UDATA UDATA TIB



  

Part 2

Boot Process



  

Boot process

1. BIOS initialization and loading of boot sector.
2. Boot sector loads bootstrap loader (boot.asm).
3. Real-mode initialization (ldrinit)
4. Bootstrap loader sets up memory and loads kernel 

(osldr.dll).
5. Kernel initializes subsystems and starts main task 

(krnl.dll).
6. Main kernel task loads device drivers, mounts 

filesystems and loads os.dll into user space.
7. User mode component (os.dll) initializes user 

module database, memory heap, and loads and 
executes the init application (e.g. sh.exe or 
jinit.exe).

8. All systems are GO. We are up and running.



  

Step 1: BIOS

• CPU reset starts executing 
ROM BIOS.

• BIOS initializes and configures 
computer and devices.

• BIOS loads the boot sector from 
sector 0 of the boot device (512 
bytes) at 0x7C00.

• The BIOS jumps to 0:7C00 in 16 
bit real-mode.

• Partitioned boot devices first 
loads the master boot record 
(mbr), which then loads and 
starts the boot sector in the 
active boot partition.

• When booting from CD or 
network the whole initial boot 
disk image is loaded by BIOS at 
7C00. Because the boot sector 
is the first sector of the boot disk 
the bootstrap is executed.

osldr

0x000A0000

memend

0x00000000

BIOS ROM area

0x00007C00

boot stack

0x00090000

0x00100000
heap

boot disk image

boot sector
BIOS data area



  

Step 2: Boot sector (boot)

• Depending on the boot device:
– If booting from floppy or harddisk, loads the 

osldr from boot device using BIOS INT 13 
services

– If booting from CD or network, copies the 
osldr from the boot RAM disk image

• Calls real-mode entry point in osldr. The 
”DOS-stub” in osldr.dll is used for real 
mode code in the loader.



  

Step 3: Real-mode initialization (ldrinit)

• Try to get system memory map from BIOS
• Check for APM BIOS
• Disables interrupts. Interrupts are reenabled 

when the kernel has been initialized.
• Enables A20. 
• Loads boot descriptors (GDT, IDT).
• Initialize segment registers using boot 

descriptors.
• Switches the processor to protected mode 

and calls 32-bit entry point



  

Step 4: Bootstrap loader (osldr.dll)

• Determines memory size.
• Heap allocation starts at 1MB.
• Allocate page for page directory.
• Make recursive entry for access to page tables.
• Allocate system page.
• Allocate initial thread control block (TCB).
• Allocate system page directory page.
• Map system page, page directory, video buffer, and initial TCB.
• Temporarily map first 4MB to physical memory.
• If initial ram boot disk present copy it to high memory.
• Load kernel from boot disk.
• Set page directory (CR3) and enable paging (PG bit in CR0).
• Setup descriptors in syspage (GDT, LDT, IDT and TSS).
• Copy boot parameters to syspage.
• Reload segment registers.
• Switch to initial kernel stack and jump to kernel.



  

Step 5: Kernel startup (krnl.dll)

• Initialize memory management subsystem
– Initialize page frame database.
– Initialize page directory.
– Initialize kernel heap.
– Initialize kernel allocator.
– Initialize virtual memory manager.

• Initialize thread control subsystem
– Initialize interrupts, floating-point, and real-time clock.
– Initialize scheduler.
– Enable interrupts.

• Start main task

• Process idle tasks



  

Step 6: Main kernel task (krnl.dll)

• Enumerate root host buses and units
• Initialize boot devices (floppy and harddisk).
• Initialize built-in filesystems (dfs, devfs, procfs, and pipefs).
• Mount root device.
• Load kernel configuration (/etc/krnl.ini).
• Initialize kernel module loader.
• Load kernel modules.
• Bind, load and initialize device drivers.
• Initialize networking.
• Allocate handles for stdin, stdout and stderr.
• Allocate and initialize process environment block (PEB).
• Load /bin/os.dll into user space
• Initialize initial user thread (stack and tib)
• Call entry point in os.dll



  

Step 7: User mode startup (os.dll)

• Load user mode selectors into segment 
registers

• Load os configuration (/etc/os.ini). 
• Initialize heap allocator.
• Initialize network interfaces, resolver and NTP 

daemon
• Initialize user module database.
• Mount additional filesystems.
• Load, bind and execute initial application.



  

Step 8: Execute application

• All systems are now 
up and running.

• The application uses 
the OS API, exported 
from os.dll to call 
system services.

• Examples: sh.exe 
and jinit.exe

OS API categories: 
• system
• file
• network
• resolver
• virtual memory
• heap
• modules
• time
• threads
• synchronization
• critical sections
• thread local storage



  

OS API functions

canonicalize
chdir
chsize
close
dup
flush
format
fstat
fstatfs
futime
getcwd
getfsstat
ioctl
link
lseek
mkdir
mount
open
opendir
read
readdir
readv
rename
rmdir
stat
statfs
tell
umount
unlink
utime
write
writev

file
accept
bind
connect
getpeername
getsockname
getsockopt
listen
recv
recvfrom
send
sendto
setsockopt
shutdown
socket

socket
beginthread
endthread
epulse
ereset
eset
getcontext
getprio
gettib
gettid
mkevent
mksem
raise
resume
self
semrel
setcontext
setprio
signal
sleep
suspend
wait
waitall
waitany

thread
csfree
enter
leave
mkcs

critsect

tlsalloc
tlsfree
tlsget
tlsset

tls

calloc
free
mallinfo
malloc
realloc

heap

dn_comp
dn_expand
res_mkquery
res_query
res_querydomain
res_search
res_send

resolver

gethostbyaddr
gethostbyname
gethostname
getprotobyname
getprotobynumber
getservbyname
getservbyport
inet_addr
inet_ntoa

netdb

exec
getmodpath
getmodule
load
resolve
unload

module

clock
gettimeofday
settimeofday
time

time

mlock
mmap
mprotect
mremap
munlock
munmap

memory config
dbgbreak
exit
loglevel
panic
peb
syscall
syslog

system



  

Win32 subsystem

• Partial implementation of the following 
Win32 modules:
– KERNEL32
– USER32
– ADVAPI32
– MSVCRT
– WINMM
– WSOCK32



  

Java VM

• SanOS supports any 
standard pure Java 
server applications.

• Uses Sun Microsystems 
HotSpot Java VM for 
Win32.

• Supports standard JNI 
for native interface.

• jinit.exe loads the Java 
VM and starts the main 
method of the startup 
class.krnl.dll

os.dll

win32 subsysjinit

jvm

Java server application
(e.g. tomcat, jboss)

(jni)

Java 2 SDK

hpi



  

Booting from CD-ROM

• BOOTIMG.BIN contains a small 
(512K) dfs boot filesystem image 
with cdboot as boot sector.

• The CD-ROM boot loader in the 
BIOS loads the 512K boot image 
into memory at 0x7C00.

• The cdboot bootsector in the first 
sector of BOOTIMG.BIN copies 
the osldr to 0x90000 and 
executes it.

• The kernel is copied from the 
boot image to high memory. The 
boot image is also copied to high 
memory.

• When the kernel is started a 
RAM disk (initrd) is created from 
the boot image and mounted on 
root. The rest of the CD-ROM is 
mounted on /usr.

System
(unused)

Bootable CD-ROM image
sector 0

sector 16 Primary volume

Boot volumesector 17

…

Set terminator volume

BOOTCAT.BIN

BOOTIMG.BIN

File data for /usr

CD-ROM root dir



  

boot.jbox.dksanos01.jbox.dk

Booting from network

• PXE BIOS boot ROM sends 
DHCP request to obtain network 
and boot parameters.

• PXE BIOS retrieves 512K boot 
image (sanos.0) from TFTP 
server.

• The sanos.0 image is a boot 
image with a dfs filesystem. The 
first sector of the image contains 
the netboot boot sector.

• The netboot boot sector copies 
the osldr to 0x90000 and 
executes it.

• The kernel is copied from the 
boot image to high memory. The 
boot image is also copied to high 
memory.

• When the kernel is started a 
RAM disk (initrd) is created from 
the boot image and mounted on 
root. Then /usr is mounted on a 
remote SMB file share.

dhcpd

tftpd

smbd

PXE BIOS
boot ROM

DHCP
request

TFTP
sanos.0

sanos 
kernel

mount /usr

host sanos01 {
  hardware ethernet 00:30:1b:ab:95:54;
  fixed-address sanos01.jbox.dk;
  filename "sanos/sanos.0";
  next-server boot.jbox.dk;
}

From /etc/dhcpd.conf on boot.jbox.dk:



  

Part 3

Memory Management



  

Memory management

• pdir.c controls the virtual memory 
mapping (pdir and ptab). 

• pframe.c controls the allocation of  
physical memory (pfdb).

• kmem.c tracks the use of the kernel 
module and heap areas and allocation 
and mapping of physical pages to 
virtual addresses (osvmap and 
kmodmap).

• kmalloc.c allocates and deallocates 
small blocks (<4K) from the kernel 
heap (buckets). Larger blocks are 
delegated to kmem.

• vmm.c reserves virtual addresses in 
user space and commits and maps 
these to physical memory (vmap).

• heap.c is a standard C heap allocator 
(malloc, free, realloc) (Doug 
Lea) on top of the vmm.

pframe.c pdir.c

kmem.c

kmalloc.c

vmm.c

heap.c



  

Module Loader

• Both kernel and user mode DLL modules
• Loading module

– Allocate module memory and load image from file

– Resolve dependencies
– Relocate module(s)
– Bind imports
– Protect module(s)

– Initialize module(s)

– Notify debugger
– Update reference counts



  

Part 4

Thread Control



  

Thread control blocks

espthread object kernel stack

• Each thread has an 8K thread control block (tcb).
• Each tcb is aligned on 8K boundary
• tcbs are allocated on the kernel heap. 

• Initial kernel thread is allocated in syspage block.

• esp0 in tss points to stack top in current tcb

tss

esp0



  

Thread information block (tib)

espthread object kernel stack

• Each user mode thread has a 4K thread information block (tib) 
allocated in user space.

• The format of the tib is compatible with win32.
• The fs segment register always references the tib for the current 

thread.
• The tib contains the thread local storage array for the thread.
• The tcb contains a reference to the tib for user mode threads.

tib

tls array

fs



  

User stacks

espthread object kernel stack

• Each user thread has a user mode stack
• The first page of the stack is committed when it is created.
• The rest of the pages in the stack are reserved with guard pages.
• When the stack grows the guard page handler expands down the 

stack and commits pages.

tib

reserved

stacktop
stacklimit
stackbase

committed

user stack



  

Enter  kernel  (1)

• trap/fault occurs (int, exception, interrupt)

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

tcb

esp0

user stackuser code

kernel code



  

Enter  kernel  (2)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

tcb

esp0

user stackuser code

kernel code

essesp



  

Enter  kernel  (3)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags  (IF=0, TF=0)

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

tcb

esp0

user stackuser code

kernel code

essespflg



  

Enter  kernel  (4)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags  (IF=0, TF=0)
– push user eip, load kernel entry eip

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflg

Hardware programmed
single instrution

cseip



  

Enter  kernel  (5)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags  (IF=0, TF=0)
– push user eip, load kernel entry eip

• push error code

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflgcseiperr

Hardware programmed
single instrution



  

Enter  kernel  (6)

• trap/fault occurs (int, exception, interrupt)
– push user esp on to kernel stack, load kernel esp
– push user eflags, reset flags  (IF=0, TF=0)
– push user eip, load kernel entry eip

• push error code
• push trap number, registers and set thread context pointer

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflgcseiperrregs num

Hardware programmed
single instrution



  

Context record

• Context record is a pointer 
into the kernel stack

• This record can be modified 
while in kernel mode

• Context record will be 
restored when the thread 
leaves the kernel

tcb

esp0

ssespflgcseiperrregs num

context record

struct context
{
  unsigned long es, ds;
  unsigned long edi, esi, ebp, ebx, edx, ecx, eax;
  unsigned long traptype;
  unsigned long errcode;

  unsigned long eip, ecs;
  unsigned long eflags;
  unsigned long esp, ess;
};



  

Current thread

• tcbs are aligned on 8K boundary
• The current thread can be obtained from the value of the stack pointer 

in kernel mode.

tcb

esp0

kernel stack

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi
mov ebx, esp
and ebx, -sizeof tcb



  

Context switch (1)

• Dispatcher calls context_switch  to change context to another thread.
• Caller pushes new tcb and return address on stack.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

esp

tcb

kernel code

esp

tcbeip



  

Context switch (2)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx tcb



  

Context switch (3)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.
• Fetch stack pointer for new thread and store in esp0.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx

...eipebpesi edi ebx

tcb

tcb



  

Context switch (4)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.
• Fetch stack pointer for new thread and store in esp0.
• Restore registers from new kernel stack.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx

...eip

tcb

tcb



  

Context switch (5)

• Dispatcher calls context_switch to change context to another thread.
• Caller pushes new tcb and return address on stack.
• Registers are saved on current kernel stack.
• Store kernel stack pointer in tcb.
• Fetch stack pointer for new thread and store in esp0.
• Restore registers from new kernel stack.
• Return from context_switch restores eip.

tcb

esp0

...

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

esp

tcb

kernel code

esp

eipebpesi edi ebx

...

tcb



  

System calls (1)

• System calls are exported from os.dll. 
• All kernel system calls are handled by the syscall() function.
• When a kernel system call is invoked a privilege transition from user 

mode to kernel mode takes place, and the stack is switched from user 
stack to kernel stack.  

• When the function returns these actions are reversed, the thread 
switches back to the user stack and returns to user mode privileges.

• Consider the system call function(param1, param2). Prior to this 
function being called, two parameters are pushed onto the user stack 
in reverse order. 

• When function() is invoked, the return address is first pushed onto the 
user stack and then the old base pointer for the previous stack frame is 
pushed. The call stack after the call looks like: param2

param1
ret addr

ebp



  

System calls (2)

• The implementation for function() is as follows:
   int function(param1, param2)
  {
    return syscall(SYSCALL_FUNCTION, &param1);
  }

• syscall() takes two parameters, a system call number, 
syscallno, and a pointer to the first parameter supplied to 
the function that calls syscall(). When syscall() is invoked, 
these two parameters are pushed onto the user stack in 
reverse order. The return address is pushed onto the 
stack when the call is made and the first action of the 
syscall() function is to push the base pointer onto the 
user stack.

• syscall() is an assembly language routine that causes a 
trap to the kernel through INT 48. 

• Before doing this, it stores the system call number and 
pointer to the first parameter of the specific system call in 
the eax and edx registers, respectively.

syscall:
  push  ebp
  mov   ebp, esp
  mov   eax, 8[ebp]
  mov   edx, 12[ebp]
  int   48
  leave
  ret

param2
param1
ret addr

ebp

syscallno
ret addr

ebp



  

System calls (3)

• When the trap is executed the system switches to 
kernel mode and executes the systrap routine

• systrap saves the data segments  and takes the two 
parameters in eax and edx and passes these to the 
kernel mode syscall routine.

• The system trap mechanism has been carefully 
designed to minimize the number of registers that 
must be preserved between system calls.

• Support for sysenter/sysexit for Pentium processors.

esp
eip

eflags

eax ebx
ecx edx
ebp 

esi edi

tcb

esp0

user stackuser code

kernel code

ssespflgcseipdsparams essyscallno

systrap:
  push   ds
  push   es
  push   edx
  push   eax
  mov    ax, SEL_KDATA
  mov    ds, ax
  mov    es, ax
  call   syscall
  add    esp, 8
  pop    es
  pop    ds
  iretd



  

Trap Frames

ssespflgcseiperrnumring 3 interrupt eaxecxedxebxebpesiedidses

ring 0 interrupt flgcseiperrnumeaxecxedxebxebpesiedidses

ssespflgcseiperrnumdsesint 48 syscall

sysenter syscall esp eipnumdses

paramssyscallno

paramssyscallno



  

Thread states

• Threads are created in INITIALIZED state.
• When mark_thread_ready() is called the thread 

moves to the READY state and is inserted into 
one of the wait queues.

• When the scheduler selects the thread for 
execution it moves to the RUNNING state and 
the dispatcher swicthes the processor to the 
threads context.

• The thread continues running until it must wait 
on an object to become signaled (blocked) or 
its quantum expires (preempted). 

• If the quantum expires the thread is marked as 
READY and the next ready thread is moved to 
the RUNNING state.

• If the thread is blocked the thread is added to 
the waitlist for the object and enters the 
WAITING state.

• When the object is signaled the thread is 
scheduled for execution by inserting it into the 
ready queue for the threads priority. The thread 
enters the READY state.

• When the thread terminates it enters the 
TERMINATED state. The thread object is not 
removed until all handles to it has been closed.

INITIALIZED

READY

TERMINATED

WAITINGRUNNING



  

31

30

29

...

Scheduling

• Each thread has a dynamic and a base 
priority.

• Threads that are ready to run are 
scheduled in a round-robin manner based 
on priority.

• A thread is not scheduled until no higher 
priority threads are ready to run.

• The scheduler has one ready queue for 
each priority level.

• Time slice is 36 quantum units
• Three quantum units charged per tick (10 

ms)
• One quantum unit charged each time a 

thread is restarted after a wait.
• Running thread preempted when higher 

priority thread gets ready to run.
• Priority boosting is applied to thread when 

started after an I/O wait.
• Boosting never moves threads to the real-

time range.
• Boosting is applied to the base priority.
• Dynamic priority is decreased (decayed) at 

each quantum expiry until it reaches base 
priority.

16

highest priority

lowest priority

15

14

...

3

2

1

0

threadthread

thread

thread

thread

re
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Synchronization objects

• Object types
– THREAD
– EVENT
– TIMER
– MUTEX
– SEMAPHORE
– FILE

– SOCKET
– IOMUX



  

Thread synchronization

• The object header 
contains the 
object type, 
signaled state, 
and a list of the 
threads waiting on 
the object.

• The waitblock 
represents a 
thread waiting on 
an object.

• Each thread has a 
list of the objects 
it is waiting on.

thread 1

wait  list

thread 2

wait list

object a

waitlist

object b

waitlist

waitblock

next

thread
object

waiter links

waitblock

next

thread
object

waiter links

waitblock

next

thread
object

waiter links



  

Signal handling

• Signal handlers are registered with signal().
• When a trap occurs send_signal() is called by the kernel trap handler.
• The context record is pushed into the user stack.
• Parameters to global signal handler are pushed onto the stack. 
• The EIP register in the context record is change to the address of the 

global signal handler.
• This causes the global signal handler in signal.c to be invoked when the 

thread leaves the kernel.
• The global signal handler uses the signal handler table to dispatch the 

signal to the signal handler.
• When the signal handler returns the global signal handler uses int 49 to 

call the sigexit handler in the kernel.
• The sigexit handler in the kernel restores the context and resumes 

execution of the thread.
• The signal handler can change the context record or use longjmp() to 

alter the execution of the thread.



  

Part 5

I/O Management



  

I/O Components

• Device Drivers 

• Device Manager

• Virtual File System layer and 
filesystems

• Socket interface and networking

• I/O multiplexing



  

Device types

• Bus device (enumerate)
– pci
– isapnp

• Block device (read, write)
– fd
– hd
– cd

• Stream device (read, write)
– console
– serial

• Packet device (receive, transmit)
– 3c905c
– ne2000
– pcnet32
– eepro100
– sis900
– rtl8139



  

File systems

• Virtual File System (vfs)
• File systems

– dfs
Native sanos disk file system

– devfs 
Device file system (/dev)

– procfs 
Kernel information file system (/proc)

– pipefs 
Pipe file system (for pipe())

– smbfs 
Remote SMB file system (Windows file shares)

– cdfs 
CD-ROM file system (ISO-9660)

• Buffer Cache Manager



  

Disk file system layout

block 0 block 1 block 2 block 3 ... block n

boot 
sector

super
 block

reserved
blocks
(osldr)

group
descriptor 

table

inode
bitmap

inode
table

block
bitmap

data
blocks

inode
bitmap

inode
table

block
bitmap

data
blocks

sector 0 sector 1 sector 2 sector 3 ... sector n

group 0 group 1 group 2 group 3 ... group n

Group 0:

Group n:

Block:

Group:

Device:



  

Cache buffer states

FREE

READING

WRITINGCLEAN DIRTY

LOCKED UPDATE

INVALID



  

Networking

• Socket interface (tcp and udp sockets)
• Network interface (netif)
• Protocols

– TCP
– UDP
– IP
– ICMP
– DHCP
– DNS
– ARP
– IEEE 802.3 (Ethernet)



  

Design Principles

Performance Flexibility

Simplicity

sanos



  

Logo
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